NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST Bennett5 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Bennett5          (Bennett5.dat)
       8:  * 
       9:  * Procedure:     Nonlinear Least Squares Regression
      10:  * 
      11:  * Description:   These data are the result of a NIST study involving
      12:  *                superconductivity magnetization modeling.  The
      13:  *                response variable is magnetism, and the predictor
      14:  *                variable is the log of time in minutes.
      15:  * 
      16:  * Reference:     Bennett, L., L. Swartzendruber, and H. Brown, 
      17:  *                NIST (1994).  
      18:  *                Superconductivity Magnetization Modeling.
      19:  * 
      20:  * Data:          1 Response Variable  (y = magnetism)
      21:  *                1 Predictor Variable (x = log[time])
      22:  *                154 Observations
      23:  *                Higher Level of Difficulty
      24:  *                Observed Data
      25:  * 
      26:  * Model:         Miscellaneous Class
      27:  *                3 Parameters (b1 to b3)
      28:  * 
      29:  *                y = b1 * (b2+x)**(-1/b3)  +  e
      30:  * 
      31:  *           Starting values                  Certified Values
      32:  * 
      33:  *         Start 1     Start 2           Parameter     Standard Deviation
      34:  *   b1 =   -2000       -1500        -2.5235058043E+03  2.9715175411E+02
      35:  *   b2 =      50          45         4.6736564644E+01  1.2448871856E+00
      36:  *   b3 =       0.8         0.85      9.3218483193E-01  2.0272299378E-02
      37:  * 
      38:  * Residual Sum of Squares:                    5.2404744073E-04
      39:  * Residual Standard Deviation:                1.8629312528E-03
      40:  * Degrees of Freedom:                               151
      41:  * Number of Observations:                           154
      42:  */
      43: Title "Bennett5";
      44: Iterations 800;
      45: Variables y,x;
      46: Parameter b1 = -2000;
      47: Parameter b2 = 50;
      48: Parameter b3 = 0.8;
      49: Function y = b1 * (b2+x)**(-1/b3);
      50: Plot;
      51: Data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Bennett5
    Number of observations = 154
    Maximum allowed number of iterations = 800
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 469
    Final sum of squared deviations = 5.2404744E-004
    Final sum of deviations = -2.3167221E-007
    Standard error of estimate = 0.00186293
    Average deviation = 0.00128192
    Maximum deviation for any observation = 0.0120151
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 1.0000  (100.00%)
    Durbin-Watson test for autocorrelation = 1.414
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y        -34.8347        -31.7868       -32.36551       0.5678646
             x        7.447168        12.27224        11.30475       0.9243164
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1          -2000        -2523.5046        297.1524      -8.49  0.00001
            b2             50        46.7365596        1.244891      37.54  0.00001
            b3            0.8       0.932184914      0.02027236      45.98  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     2        49.33742        24.66871   7.1E+006  0.00001
    Error        151    0.0005240474   3.470513E-006
    Total        153        49.33794
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.