NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - DanielWood Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  DanielWood        (DanielWood.dat)
       8:  *
       9:  * Description:   These data and model are described in Daniel and Wood
      10:  *                (1980), and originally published in E.S.Keeping, 
      11:  *                "Introduction to Statistical Inference," Van Nostrand
      12:  *                Company, Princeton, NJ, 1962, p. 354.  The response
      13:  *                variable is energy radieted from a carbon filament
      14:  *                lamp per cm**2 per second, and the predictor variable
      15:  *                is the absolute temperature of the filament in 1000
      16:  *                degrees Kelvin.
      17:  * 
      18:  * Reference:     Daniel, C. and F. S. Wood (1980).
      19:  *                Fitting Equations to Data, Second Edition. 
      20:  *                New York, NY:  John Wiley and Sons, pp. 428-431.
      21:  * 
      22:  * Data:          1 Response Variable  (y = energy)
      23:  *                1 Predictor Variable (x = temperature)
      24:  *                6 Observations
      25:  *                Lower Level of Difficulty
      26:  *                Observed Data
      27:  * 
      28:  * Model:         Miscellaneous Class
      29:  *                2 Parameters (b1 and b2)
      30:  * 
      31:  *                y  = b1*x**b2  +  e
      32:  *
      33:  *           Starting values                  Certified Values
      34:  * 
      35:  *         Start 1     Start 2           Parameter     Standard Deviation
      36:  *   b1 =   1           0.7           7.6886226176E-01  1.8281973860E-02
      37:  *   b2 =   5           4             3.8604055871E+00  5.1726610913E-02
      38:  *  
      39:  * Residual Sum of Squares:                    4.3173084083E-03
      40:  * Residual Standard Deviation:                3.2853114039E-02
      41:  * Degrees of Freedom:                                4
      42:  * Number of Observations:                            6
      43:  */
      44: Title "Daniel Wood";
      45: Variables y,x;
      46: Parameter b1 = 1;
      47: Parameter b2 = 5;
      48: Function y = b1*x**b2;
      49: Plot;
      50: Data;
    
    Beginning computation...
    Stopped due to: Both parameter and relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Daniel Wood
    Number of observations = 6
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Both parameter and relative function convergence.
    Number of iterations performed = 6
    Final sum of squared deviations = 4.3173084E-003
    Final sum of deviations = -6.4689642E-003
    Standard error of estimate = 0.0328531
    Average deviation = 0.0232398
    Maximum deviation for any observation = 0.0368365
    Proportion of variance explained (R^2) = 0.9994  (99.94%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9993  (99.93%)
    Durbin-Watson test for autocorrelation = 1.949
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y           2.138            5.66        4.006333        1.233984
             x           1.309            1.68           1.521       0.1294002
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1              1       0.768862262      0.01828197      42.06  0.00001
            b2              5        3.86040559      0.05172661      74.63  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     1         7.60926         7.60926    7050.00  0.00001
    Error          4     0.004317308     0.001079327
    Total          5        7.613577
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.