NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - ENSO Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  ENSO              (ENSO.dat)
       8:  * 
       9:  * Description:   The data are monthly averaged atmospheric pressure 
      10:  *                differences between Easter Island and Darwin, 
      11:  *                Australia.  This difference drives the trade winds in 
      12:  *                the southern hemisphere.  Fourier analysis of the data
      13:  *                reveals 3 significant cycles.  The annual cycle is the
      14:  *                strongest, but cycles with periods of approximately 44
      15:  *                and 26 months are also present.  These cycles
      16:  *                correspond to the El Nino and the Southern Oscillation.
      17:  *                Arguments to the SIN and COS functions are in radians.
      18:  * 
      19:  * Reference:     Kahaner, D., C. Moler, and S. Nash, (1989). 
      20:  *                Numerical Methods and Software.  
      21:  *                Englewood Cliffs, NJ: Prentice Hall, pp. 441-445.
      22:  * 
      23:  * Data:          1 Response  (y = atmospheric pressure)
      24:  *                1 Predictor (x = time)
      25:  *                168 Observations
      26:  *                Average Level of Difficulty
      27:  *                Observed Data
      28:  * 
      29:  * Model:         Miscellaneous Class
      30:  *                9 Parameters (b1 to b9)
      31:  * 
      32:  *                y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 ) 
      33:  *                       + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
      34:  *                       + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 )  + e
      35:  *  
      36:  *           Starting values                  Certified Values
      37:  *  
      38:  *         Start 1     Start 2           Parameter     Standard Deviation
      39:  *   b1 =   11.0        10.0          1.0510749193E+01  1.7488832467E-01
      40:  *   b2 =    3.0         3.0          3.0762128085E+00  2.4310052139E-01
      41:  *   b3 =    0.5         0.5          5.3280138227E-01  2.4354686618E-01
      42:  *   b4 =   40.0        44.0          4.4311088700E+01  9.4408025976E-01
      43:  *   b5 =   -0.7        -1.5         -1.6231428586E+00  2.8078369611E-01
      44:  *   b6 =   -1.3         0.5          5.2554493756E-01  4.8073701119E-01
      45:  *   b7 =   25.0        26.0          2.6887614440E+01  4.1612939130E-01
      46:  *   b8 =   -0.3        -0.1          2.1232288488E-01  5.1460022911E-01
      47:  *   b9 =    1.4         1.5          1.4966870418E+00  2.5434468893E-01
      48:  * 
      49:  * Residual Sum of Squares:                    7.8853978668E+02
      50:  * Residual Standard Deviation:                2.2269642403E+00
      51:  * Degrees of Freedom:                               159
      52:  * Number of Observations:                           168
      53:  */
      54: Title "ENSO";
      55: Variables y,x;
      56: Parameter b1 = 11.0;
      57: Parameter b2 =   3.0;
      58: Parameter b3 =   0.5;
      59: Parameter b4 =  40.0;
      60: Parameter b5 =  -0.7;
      61: Parameter b6 =  -1.3;
      62: Parameter b7 =  25.0;
      63: Parameter b8 =  -0.3;
      64: Parameter b9 =   1.4;
      65: Function y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 ) 
      66:              + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
      67:              + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 );
      68: Angletype radians;
      69: plot;
      70: data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    ENSO
    Number of observations = 168
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 13
    Final sum of squared deviations = 7.8853979E+002
    Final sum of deviations = 1.0502255E-006
    Standard error of estimate = 2.22696
    Average deviation = 1.72826
    Maximum deviation for any observation = 5.70664
    Proportion of variance explained (R^2) = 0.5983  (59.83%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.5781  (57.81%)
    Durbin-Watson test for autocorrelation = 1.642
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y             0.3            17.6        10.64167        3.428507
             x               1             168            84.5        48.64155
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1             11        10.5107497       0.1748883      60.10  0.00001
            b2              3        3.07621274       0.2431005      12.65  0.00001
            b3            0.5       0.532801467       0.2435469       2.19  0.03015
            b4             40        44.3110746       0.9440801      46.94  0.00001
            b5           -0.7       -1.62314546       0.2807827      -5.78  0.00001
            b6           -1.3       0.525536331       0.4807378       1.09  0.27597
            b7             25        26.8876135       0.4161293      64.61  0.00001
            b8           -0.3       0.212320664       0.5146003       0.41  0.68046
            b9            1.4        1.49668749       0.2543444       5.88  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     8        1174.489        146.8111      29.60  0.00001
    Error        159        788.5398         4.95937
    Total        167        1963.028
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.