NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Gauss1 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Gauss1            (Gauss1.dat)
       8:  * 
       9:  * Procedure:     Nonlinear Least Squares Regression
      10:  * 
      11:  * Description:   The data are two well-separated Gaussians on a 
      12:  *                decaying exponential baseline plus normally 
      13:  *                distributed zero-mean noise with variance = 6.25.
      14:  * 
      15:  * Reference:     Rust, B., NIST (1996).
      16:  * 
      17:  * Data:          1 Response  (y)
      18:  *                1 Predictor (x)
      19:  *                250 Observations
      20:  *                Lower Level of Difficulty
      21:  *                Generated Data
      22:  *  
      23:  * Model:         Exponential Class
      24:  *                8 Parameters (b1 to b8) 
      25:  *  
      26:  *                y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
      27:  *                                    + b6*exp( -(x-b7)**2 / b8**2 ) + e
      28:  *  
      29:  *  
      30:  *           Starting values                  Certified Values
      31:  *  
      32:  *         Start 1     Start 2           Parameter     Standard Deviation
      33:  *   b1 =    97.0        94.0         9.8778210871E+01  5.7527312730E-01
      34:  *   b2 =     0.009       0.0105      1.0497276517E-02  1.1406289017E-04
      35:  *   b3 =   100.0        99.0         1.0048990633E+02  5.8831775752E-01
      36:  *   b4 =    65.0        63.0         6.7481111276E+01  1.0460593412E-01
      37:  *   b5 =    20.0        25.0         2.3129773360E+01  1.7439951146E-01
      38:  *   b6 =    70.0        71.0         7.1994503004E+01  6.2622793913E-01
      39:  *   b7 =   178.0       180.0         1.7899805021E+02  1.2436988217E-01
      40:  *   b8 =    16.5        20.0         1.8389389025E+01  2.0134312832E-01
      41:  * 
      42:  * Residual Sum of Squares:                    1.3158222432E+03
      43:  * Residual Standard Deviation:                2.3317980180E+00
      44:  * Degrees of Freedom:                               242
      45:  * Number of Observations:                           250
      46:  */
      47: Title "Gauss1";
      48: Variables y,x;
      49: Parameter b1 = 97.0;
      50: Parameter b2 = 0.009;
      51: Parameter b3 = 100.0;
      52: Parameter b4 = 65.0;
      53: Parameter b5 = 20.0;
      54: Parameter b6 = 70.0;
      55: Parameter b7 = 178.0;
      56: Parameter b8 = 16.5;
      57: Function   y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 ) + b6*exp( -(x-b7)**2 / b8**2 );
      58: plot;
      59: data;
    
    Beginning computation...
    Stopped due to: Singular convergence.  Mutually dependent parameters?
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Gauss1
    Number of observations = 250
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Singular convergence.  Mutually dependent parameters?
    Warning: All data points are on one side of the curve.
    This indicates the model does not fit the data well.
    Number of iterations performed = 1
    Final sum of squared deviations = 4.7460231E+103
    Final sum of deviations = -9.1298813E+051
    Standard error of estimate = 4.42851E+050
    Average deviation = 3.65195E+049
    Maximum deviation for any observation = 6.62623E+051
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y        1.182746        152.0519         60.5314        41.70884
             x               1             250           125.5        72.31298
    
    
      ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate 
    ----------  -------------  ----------------
            b1             97                97
            b2          0.009             0.009
            b3            100               100
            b4             65                65
            b5             20                20
            b6             70                70
            b7            178               178
            b8           16.5              16.5
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     7               0               0       0.00  1.00000
    Error        242   4.746023E+103   1.961167E+101
    Total        249        433167.1
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.