NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Gauss2 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Gauss2            (Gauss2.dat)
       8:  * 
       9:  * Description:   The data are two slightly-blended Gaussians on a 
      10:  *                decaying exponential baseline plus normally 
      11:  *                distributed zero-mean noise with variance = 6.25. 
      12:  * 
      13:  * Reference:     Rust, B., NIST (1996). 
      14:  * 
      15:  * Data:          1 Response  (y)
      16:  *                1 Predictor (x)
      17:  *                250 Observations
      18:  *                Lower Level of Difficulty
      19:  *                Generated Data
      20:  * 
      21:  * Model:         Exponential Class
      22:  *                8 Parameters (b1 to b8)
      23:  * 
      24:  *                y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 ) 
      25:  *                                    + b6*exp( -(x-b7)**2 / b8**2 ) + e
      26:  * 
      27:  *           Starting values                  Certified Values
      28:  * 
      29:  *         Start 1     Start 2           Parameter     Standard Deviation
      30:  *   b1 =    96.0        98.0         9.9018328406E+01  5.3748766879E-01
      31:  *   b2 =     0.009       0.0105      1.0994945399E-02  1.3335306766E-04
      32:  *   b3 =   103.0       103.0         1.0188022528E+02  5.9217315772E-01
      33:  *   b4 =   106.0       105.0         1.0703095519E+02  1.5006798316E-01
      34:  *   b5 =    18.0        20.0         2.3578584029E+01  2.2695595067E-01
      35:  *   b6 =    72.0        73.0         7.2045589471E+01  6.1721965884E-01
      36:  *   b7 =   151.0       150.0         1.5327010194E+02  1.9466674341E-01
      37:  *   b8 =    18.0        20.0         1.9525972636E+01  2.6416549393E-01
      38:  * 
      39:  * Residual Sum of Squares:                    1.2475282092E+03
      40:  * Residual Standard Deviation:                2.2704790782E+00
      41:  * Degrees of Freedom:                               242
      42:  * Number of Observations:                           250
      43:  */
      44: Title "Gauss2";
      45: Variables y,x;
      46: Parameter b1 =  96.0;
      47: Parameter b2 =   0.009;
      48: Parameter b3 = 103.0;
      49: Parameter b4 = 106.0;
      50: Parameter b5 =  18.0;
      51: Parameter b6 =  72.0;
      52: Parameter b7 = 151.0;
      53: Parameter b8 =  18.0;
      54: Function  y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 ) 
      55:               + b6*exp( -(x-b7)**2 / b8**2 );
      56: Plot;
      57: Data;
    
    Beginning computation...
    Stopped due to: Singular convergence.  Mutually dependent parameters?
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Gauss2
    Number of observations = 250
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Singular convergence.  Mutually dependent parameters?
    Warning: All data points are on one side of the curve.
    This indicates the model does not fit the data well.
    Number of iterations performed = 1
    Final sum of squared deviations = 1.2829118E+064
    Final sum of deviations = -1.7400905E+032
    Standard error of estimate = 7.28099E+030
    Average deviation = 6.96036E+029
    Maximum deviation for any observation = 1.03913E+032
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y        1.182678        133.8252        60.53187        37.76226
             x               1             250           125.5        72.31298
    
    
      ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate 
    ----------  -------------  ----------------
            b1             96                96
            b2          0.009             0.009
            b3            103               103
            b4            106               106
            b5             18                18
            b6             72                72
            b7            151               151
            b8             18                18
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     7               0               0       0.00  1.00000
    Error        242   1.282912E+064   5.301288E+061
    Total        249          355071
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.