 |
NEWS
|
|
NLREG has been selected as the "Editor"s Pick" by
SoftSeek.
|
|
|
NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.
|
|
|
If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.
|
|
|
You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.
|
|
 |
|
 |
|
|
NIST - Gauss2 Dataset
1: /*
2: * Statistical Reference Datasets (Nonlinear Regression)
3: * Statistical Engineering Division
4: * National Institute of Standards and Technology
5: * http://www.nist.gov/itl/div898/strd/
6: *
7: * Dataset Name: Gauss2 (Gauss2.dat)
8: *
9: * Description: The data are two slightly-blended Gaussians on a
10: * decaying exponential baseline plus normally
11: * distributed zero-mean noise with variance = 6.25.
12: *
13: * Reference: Rust, B., NIST (1996).
14: *
15: * Data: 1 Response (y)
16: * 1 Predictor (x)
17: * 250 Observations
18: * Lower Level of Difficulty
19: * Generated Data
20: *
21: * Model: Exponential Class
22: * 8 Parameters (b1 to b8)
23: *
24: * y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
25: * + b6*exp( -(x-b7)**2 / b8**2 ) + e
26: *
27: * Starting values Certified Values
28: *
29: * Start 1 Start 2 Parameter Standard Deviation
30: * b1 = 96.0 98.0 9.9018328406E+01 5.3748766879E-01
31: * b2 = 0.009 0.0105 1.0994945399E-02 1.3335306766E-04
32: * b3 = 103.0 103.0 1.0188022528E+02 5.9217315772E-01
33: * b4 = 106.0 105.0 1.0703095519E+02 1.5006798316E-01
34: * b5 = 18.0 20.0 2.3578584029E+01 2.2695595067E-01
35: * b6 = 72.0 73.0 7.2045589471E+01 6.1721965884E-01
36: * b7 = 151.0 150.0 1.5327010194E+02 1.9466674341E-01
37: * b8 = 18.0 20.0 1.9525972636E+01 2.6416549393E-01
38: *
39: * Residual Sum of Squares: 1.2475282092E+03
40: * Residual Standard Deviation: 2.2704790782E+00
41: * Degrees of Freedom: 242
42: * Number of Observations: 250
43: */
44: Title "Gauss2";
45: Variables y,x;
46: Parameter b1 = 96.0;
47: Parameter b2 = 0.009;
48: Parameter b3 = 103.0;
49: Parameter b4 = 106.0;
50: Parameter b5 = 18.0;
51: Parameter b6 = 72.0;
52: Parameter b7 = 151.0;
53: Parameter b8 = 18.0;
54: Function y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
55: + b6*exp( -(x-b7)**2 / b8**2 );
56: Plot;
57: Data;
Beginning computation...
Stopped due to: Singular convergence. Mutually dependent parameters?
---- Final Results ----
NLREG version 4.0
Copyright (c) 1992-1997 Phillip H. Sherrod. All rights reserved.
This is a registered copy of NLREG that may not be redistributed.
Gauss2
Number of observations = 250
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
Stopped due to: Singular convergence. Mutually dependent parameters?
Warning: All data points are on one side of the curve.
This indicates the model does not fit the data well.
Number of iterations performed = 1
Final sum of squared deviations = 1.2829118E+064
Final sum of deviations = -1.7400905E+032
Standard error of estimate = 7.28099E+030
Average deviation = 6.96036E+029
Maximum deviation for any observation = 1.03913E+032
---- Descriptive Statistics for Variables ----
Variable Minimum value Maximum value Mean value Standard dev.
---------- -------------- -------------- -------------- --------------
y 1.182678 133.8252 60.53187 37.76226
x 1 250 125.5 72.31298
---- Calculated Parameter Values ----
Parameter Initial guess Final estimate
---------- ------------- ----------------
b1 96 96
b2 0.009 0.009
b3 103 103
b4 106 106
b5 18 18
b6 72 72
b7 151 151
b8 18 18
---- Analysis of Variance ----
Source DF Sum of Squares Mean Square F value Prob(F)
---------- ---- -------------- -------------- --------- -------
Regression 7 0 0 0.00 1.00000
Error 242 1.282912E+064 5.301288E+061
Total 249 355071
Return to NLREG home page
Download demonstration copy of NLREG.
Download manuals for NLREG.
Purchase NLREG.
DTREG Decision Tree building software.
|