NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Hahn1 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Hahn1             (Hahn1.dat)
       8:  * 
       9:  * Description:   These data are the result of a NIST study involving
      10:  *                the thermal expansion of copper.  The response 
      11:  *                variable is the coefficient of thermal expansion, and
      12:  *                the predictor variable is temperature in degrees 
      13:  *                kelvin.
      14:  * 
      15:  * Reference:     Hahn, T., NIST (197?). 
      16:  *                Copper Thermal Expansion Study.
      17:  * 
      18:  * Data:          1 Response  (y = coefficient of thermal expansion)
      19:  *                1 Predictor (x = temperature, degrees kelvin)
      20:  *                236 Observations
      21:  *                Average Level of Difficulty
      22:  *                Observed Data
      23:  * 
      24:  * Model:         Rational Class (cubic/cubic)
      25:  *                7 Parameters (b1 to b7)
      26:  * 
      27:  *                y = (b1+b2*x+b3*x**2+b4*x**3) /
      28:  *                    (1+b5*x+b6*x**2+b7*x**3)  +  e
      29:  * 
      30:  *           Starting values                  Certified Values
      31:  * 
      32:  *         Start 1     Start 2           Parameter     Standard Deviation
      33:  *   b1 =   10           1            1.0776351733E+00  1.7070154742E-01
      34:  *   b2 =   -1          -0.1         -1.2269296921E-01  1.2000289189E-02
      35:  *   b3 =    0.05        0.005        4.0863750610E-03  2.2508314937E-04
      36:  *   b4 =   -0.00001    -0.000001    -1.4262662514E-06  2.7578037666E-07
      37:  *   b5 =   -0.05       -0.005       -5.7609940901E-03  2.4712888219E-04
      38:  *   b6 =    0.001       0.0001       2.4053735503E-04  1.0449373768E-05
      39:  *   b7 =   -0.000001   -0.0000001   -1.2314450199E-07  1.3027335327E-08
      40:  * 
      41:  * Residual Sum of Squares:                    1.5324382854E+00 
      42:  * Residual Standard Deviation:                8.1803852243E-02
      43:  * Degrees of Freedom:                               229
      44:  * Number of Observations:                           236
      45:  */
      46: Title "Hahn1";
      47: Variables y,x;
      48: Parameter b1 =   10;
      49: Parameter b2 =   -1;
      50: Parameter b3 =    0.05;
      51: Parameter b4 =   -0.00001;
      52: Parameter b5 =   -0.05;
      53: Parameter b6 =    0.001;
      54: Parameter b7 =   -0.000001;
      55: Function y = (b1+b2*x+b3*x**2+b4*x**3) /
      56:              (1+b5*x+b6*x**2+b7*x**3);
      57: Plot;
      58: Data;
    
    Beginning computation...
    Stopped due to: Both parameter and relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Hahn1
    Number of observations = 236
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Both parameter and relative function convergence.
    Number of iterations performed = 13
    Final sum of squared deviations = 1.5324383E+000
    Final sum of deviations = -8.0498601E-008
    Standard error of estimate = 0.0818039
    Average deviation = 0.0611089
    Maximum deviation for any observation = 0.268423
    Proportion of variance explained (R^2) = 0.9998  (99.98%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9998  (99.98%)
    Durbin-Watson test for autocorrelation = 1.510
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y            0.08          21.085         14.2153        5.768686
             x           14.13          851.61        321.2973        227.4462
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1             10        1.07763472       0.1707016       6.31  0.00001
            b2             -1      -0.122692936      0.01200029     -10.22  0.00001
            b3           0.05     0.00408637447    0.0002250832      18.15  0.00001
            b4        -1E-005  -1.42626564E-006   2.757804E-007      -5.17  0.00001
            b5          -0.05    -0.00576099391    0.0002471289     -23.31  0.00001
            b6          0.001    0.000240537327   1.044938E-005      23.02  0.00001
            b7        -1E-006  -1.23144471E-007   1.302734E-008      -9.45  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     6        7818.737        1303.123  194732.23  0.00001
    Error        229        1.532438      0.00669187
    Total        235        7820.269
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.