NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Kirby2 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Kirby2            (Kirby2.dat)
       8:  * 
       9:  * Description:   These data are the result of a NIST study involving
      10:  *                scanning electron microscope line with standards.
      11:  * 
      12:  * Reference:     Kirby, R., NIST (197?).  
      13:  *                Scanning electron microscope line width standards.
      14:  * 
      15:  * Data:          1 Response  (y)
      16:  *                1 Predictor (x)
      17:  *                151 Observations
      18:  *                Average Level of Difficulty
      19:  *                Observed Data
      20:  * 
      21:  * Model:         Rational Class (quadratic/quadratic)
      22:  *                5 Parameters (b1 to b5)
      23:  * 
      24:  *                y = (b1 + b2*x + b3*x**2) /
      25:  *                    (1 + b4*x + b5*x**2)  +  e
      26:  *  
      27:  *           Starting values                  Certified Values
      28:  *  
      29:  *         Start 1     Start 2           Parameter     Standard Deviation
      30:  *   b1 =    2           1.5          1.6745063063E+00  8.7989634338E-02
      31:  *   b2 =   -0.1        -0.15        -1.3927397867E-01  4.1182041386E-03
      32:  *   b3 =    0.003       0.0025       2.5961181191E-03  4.1856520458E-05
      33:  *   b4 =   -0.001      -0.0015      -1.7241811870E-03  5.8931897355E-05
      34:  *   b5 =    0.00001     0.00002      2.1664802578E-05  2.0129761919E-07
      35:  * 
      36:  * Residual Sum of Squares:                    3.9050739624E+00
      37:  * Residual Standard Deviation:                1.6354535131E-01
      38:  * Degrees of Freedom:                               146
      39:  * Number of Observations:                           151
      40:  */
      41: Title "Kirby2";
      42: Variables y,x;
      43: Parameter b1 = 2;
      44: Parameter b2 = -0.1;
      45: Parameter b3 = 0.003;
      46: Parameter b4 = -0.001;
      47: Parameter b5 = 0.00001;
      48: Function y = (b1 + b2*x + b3*x**2) /
      49:              (1 + b4*x + b5*x**2);
      50: Plot;
      51: Data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Kirby2
    Number of observations = 151
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 7
    Final sum of squared deviations = 3.9050740E+000
    Final sum of deviations = -1.4505737E-007
    Standard error of estimate = 0.163545
    Average deviation = 0.123289
    Maximum deviation for any observation = 0.572561
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 1.0000  (100.00%)
    Durbin-Watson test for autocorrelation = 0.047
    This Durbin-Watson value indicates autocorrelation or inappropriate function.
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y          0.0082            92.2        48.37278         30.2126
             x            9.65           371.3        198.9703        102.6116
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1              2        1.67450626      0.08798963      19.03  0.00001
            b2           -0.1      -0.139273976     0.004118204     -33.82  0.00001
            b3          0.003     0.00259611809   4.185652E-005      62.02  0.00001
            b4         -0.001    -0.00172418123   5.893189E-005     -29.26  0.00001
            b5         1E-005   2.16648024E-005   2.012976E-007     107.63  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     4        136916.3        34229.08   1.3E+006  0.00001
    Error        146        3.905074      0.02674708
    Total        150        136920.2
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.