NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Lanczos2 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Lanczos2          (Lanczos2.dat)
       8:  * 
       9:  * Description:   These data are taken from an example discussed in
      10:  *                Lanczos (1956).  The data were generated to 6-digits
      11:  *                of accuracy using
      12:  *                f(x) = 0.0951*exp(-x) + 0.8607*exp(-3*x) 
      13:  *                                      + 1.5576*exp(-5*x).
      14:  * 
      15:  * Reference:     Lanczos, C. (1956).
      16:  *                Applied Analysis.
      17:  *                Englewood Cliffs, NJ:  Prentice Hall, pp. 272-280.
      18:  * 
      19:  * Data:          1 Response  (y)
      20:  *                1 Predictor (x)
      21:  *                24 Observations
      22:  *                Average Level of Difficulty
      23:  *                Generated Data
      24:  *  
      25:  * Model:         Exponential Class
      26:  *                6 Parameters (b1 to b6)
      27:  *  
      28:  *                y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
      29:  * 
      30:  *           Starting values                  Certified Values
      31:  * 
      32:  *         Start 1     Start 2           Parameter     Standard Deviation
      33:  *   b1 =   1.2         0.5           9.6251029939E-02  6.6770575477E-04
      34:  *   b2 =   0.3         0.7           1.0057332849E+00  3.3989646176E-03
      35:  *   b3 =   5.6         3.6           8.6424689056E-01  1.7185846685E-03
      36:  *   b4 =   5.5         4.2           3.0078283915E+00  4.1707005856E-03
      37:  *   b5 =   6.5         4             1.5529016879E+00  2.3744381417E-03
      38:  *   b6 =   7.6         6.3           5.0028798100E+00  1.3958787284E-03
      39:  * 
      40:  * Residual Sum of Squares:                    2.2299428125E-11
      41:  * Residual Standard Deviation:                1.1130395851E-06
      42:  * Degrees of Freedom:                                18
      43:  * Number of Observations:                            24
      44:  */
      45: Title "Lanczos2";
      46: Variables y,x;
      47: // Note: Using Start 2 parameters
      48: Parameter b1 = 0.5;
      49: Parameter b2 = 0.7;
      50: Parameter b3 = 3.6;
      51: Parameter b4 = 4.2;
      52: Parameter b5 = 4;
      53: Parameter b6 = 6.3;
      54: Function y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x);
      55: Plot;
      56: Data;
    
    Beginning computation...
    Stopped due to: Both parameter and relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Lanczos2
    Number of observations = 24
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Both parameter and relative function convergence.
    Number of iterations performed = 9
    Final sum of squared deviations = 2.2299428E-011
    Final sum of deviations = 1.3581594E-009
    Standard error of estimate = 1.11304E-006
    Average deviation = 5.45365E-007
    Maximum deviation for any observation = 3.73724E-006
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 1.0000  (100.00%)
    Durbin-Watson test for autocorrelation = 3.139
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y       0.0623931          2.5134       0.5998774       0.6802225
             x               0            1.15           0.575       0.3535534
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1            0.5      0.0962509964    0.0006677151     144.15  0.00001
            b2            0.7        1.00573312     0.003399014     295.89  0.00001
            b3            3.6       0.864246802     0.001718608     502.88  0.00001
            b4            4.2        3.00782818      0.00417076     721.17  0.00001
            b5              4        1.55290181     0.002374471     654.00  0.00001
            b6            6.3        5.00287974     0.001395898    3583.99  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     5        10.64216        2.128432   1.7E+012  0.00001
    Error         18   2.229943E-011   1.238857E-012
    Total         23        10.64216
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.