NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - MGH09 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  MGH09             (MGH09.dat)
       8:  * 
       9:  * Description:   This problem was found to be difficult for some very 
      10:  *                good algorithms.  There is a local minimum at (+inf,
      11:  *                -14.07..., -inf, -inf) with final sum of squares 
      12:  *                0.00102734....
      13:  * 
      14:  *                See More, J. J., Garbow, B. S., and Hillstrom, K. E. 
      15:  *                (1981).  Testing unconstrained optimization software.
      16:  *                ACM Transactions on Mathematical Software. 7(1): 
      17:  *                pp. 17-41.
      18:  * 
      19:  * Reference:     Kowalik, J.S., and M. R. Osborne, (1978).  
      20:  *                Methods for Unconstrained Optimization Problems.  
      21:  *                New York, NY:  Elsevier North-Holland.
      22:  * 
      23:  * Data:          1 Response  (y)
      24:  *                1 Predictor (x)
      25:  *                11 Observations
      26:  *                Higher Level of Difficulty
      27:  *                Generated Data
      28:  *  
      29:  * Model:         Rational Class (linear/quadratic)
      30:  *                4 Parameters (b1 to b4)
      31:  *  
      32:  *                y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  e
      33:  *  
      34:  *           Starting values                  Certified Values
      35:  * 
      36:  *         Start 1     Start 2           Parameter     Standard Deviation
      37:  *   b1 =   25          0.25          1.9280693458E-01  1.1435312227E-02
      38:  *   b2 =   39          0.39          1.9128232873E-01  1.9633220911E-01
      39:  *   b3 =   41.5        0.415         1.2305650693E-01  8.0842031232E-02
      40:  *   b4 =   39          0.39          1.3606233068E-01  9.0025542308E-02
      41:  * 
      42:  * Residual Sum of Squares:                    3.0750560385E-04
      43:  * Residual Standard Deviation:                6.6279236551E-03
      44:  * Degrees of Freedom:                                7
      45:  * Number of Observations:                           11
      46:  */
      47: Title "MGH09";
      48: Variables y,x;
      49: Parameter b1 = 25;
      50: Parameter b2 = 39;
      51: Parameter b3 = 41.5;
      52: Parameter b4 = 39;
      53: Function y = b1*(x**2+x*b2) / (x**2+x*b3+b4);
      54: Plot;
      55: Data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    MGH09
    Number of observations = 11
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 61
    Final sum of squared deviations = 3.0750560E-004
    Final sum of deviations = 2.7014482E-003
    Standard error of estimate = 0.00662792
    Average deviation = 0.00373222
    Maximum deviation for any observation = 0.0111094
    Proportion of variance explained (R^2) = 0.9941  (99.41%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9915  (99.15%)
    Durbin-Watson test for autocorrelation = 3.354
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y          0.0235          0.1957      0.09374545      0.07193252
             x          0.0625               4       0.7599273        1.225952
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1             25       0.192806936      0.01143531      16.86  0.00001
            b2             39       0.191282315       0.1963322       0.97  0.36238
            b3           41.5       0.123056508      0.08084202       1.52  0.17178
            b4             39       0.136062324      0.09002555       1.51  0.17445
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     3      0.05143536      0.01714512     390.29  0.00001
    Error          7    0.0003075056   4.392937E-005
    Total         10      0.05174287
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.