NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - MGH10 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  MGH10             (MGH10.dat)
       8:  * 
       9:  * Description:   This problem was found to be difficult for some very
      10:  *                good algorithms.
      11:  * 
      12:  *                See More, J. J., Garbow, B. S., and Hillstrom, K. E. 
      13:  *                (1981).  Testing unconstrained optimization software.
      14:  *                ACM Transactions on Mathematical Software. 7(1): 
      15:  *                pp. 17-41.
      16:  * 
      17:  * Reference:     Meyer, R. R. (1970).  
      18:  *                Theoretical and computational aspects of nonlinear 
      19:  *                regression.  In Nonlinear Programming, Rosen, 
      20:  *                Mangasarian and Ritter (Eds).  
      21:  *                New York, NY: Academic Press, pp. 465-486.
      22:  * 
      23:  * Data:          1 Response  (y)
      24:  *                1 Predictor (x)
      25:  *                16 Observations
      26:  *                Higher Level of Difficulty
      27:  *                Generated Data
      28:  *  
      29:  * Model:         Exponential Class
      30:  *                3 Parameters (b1 to b3)
      31:  *  
      32:  *                y = b1 * exp[b2/(x+b3)]  +  e
      33:  * 
      34:  *           Starting values                  Certified Values
      35:  * 
      36:  *         Start 1     Start 2           Parameter     Standard Deviation
      37:  *   b1 =        2         0.02       5.6096364710E-03  1.5687892471E-04
      38:  *   b2 =   400000      4000          6.1813463463E+03  2.3309021107E+01
      39:  *   b3 =    25000       250          3.4522363462E+02  7.8486103508E-01
      40:  * 
      41:  * Residual Sum of Squares:                    8.7945855171E+01
      42:  * Residual Standard Deviation:                2.6009740065E+00
      43:  * Degrees of Freedom:                                13
      44:  * Number of Observations:                            16
      45:  */
      46: Title "MGH10";
      47: Iterations 10000;  // Increase maximum allowed iterations
      48: Variables y,x;
      49: Parameter b1 = 2;
      50: Parameter b2 = 400000;
      51: Parameter b3 = 25000;
      52: Function y = b1 * exp(b2/(x+b3));
      53: Plot;
      54: Data;
    
    Beginning computation...
    Stopped due to: Parameter convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    MGH10
    Number of observations = 16
    Maximum allowed number of iterations = 10000
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Parameter convergence.
    Number of iterations performed = 6250
    Final sum of squared deviations = 8.7945855E+001
    Final sum of deviations = 5.8196052E-001
    Standard error of estimate = 2.60097
    Average deviation = 1.75014
    Maximum deviation for any observation = 5.37484
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 1.0000  (100.00%)
    Durbin-Watson test for autocorrelation = 2.014
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y            2872           34780        12432.06        9722.364
             x              50             125            87.5        23.80476
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1              2     0.00560963633    0.0001568792      35.76  0.00001
            b2         400000        6181.34637        23.30906     265.19  0.00001
            b3          25000        345.223635       0.7848632     439.85  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     2   1.417865E+009   7.089327E+008   1.0E+008  0.00001
    Error         13        87.94586        6.765066
    Total         15   1.417866E+009
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.