NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - MGH17 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  MGH17             (MGH17.dat)
       8:  * 
       9:  * Description:   This problem was found to be difficult for some very
      10:  *                good algorithms.
      11:  * 
      12:  *                See More, J. J., Garbow, B. S., and Hillstrom, K. E.
      13:  *                (1981).  Testing unconstrained optimization software.
      14:  *                ACM Transactions on Mathematical Software. 7(1):
      15:  *                pp. 17-41.
      16:  * 
      17:  * Reference:     Osborne, M. R. (1972).  
      18:  *                Some aspects of nonlinear least squares 
      19:  *                calculations.  In Numerical Methods for Nonlinear 
      20:  *                Optimization, Lootsma (Ed).  
      21:  *                New York, NY:  Academic Press, pp. 171-189.
      22:  *  
      23:  * Data:          1 Response  (y)
      24:  *                1 Predictor (x)
      25:  *                33 Observations
      26:  *                Average Level of Difficulty
      27:  *                Generated Data
      28:  * 
      29:  * Model:         Exponential Class
      30:  *                5 Parameters (b1 to b5)
      31:  * 
      32:  *                y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5]  +  e
      33:  * 
      34:  *           Starting values                  Certified Values
      35:  * 
      36:  *         Start 1     Start 2           Parameter     Standard Deviation
      37:  *   b1 =     50         0.5          3.7541005211E-01  2.0723153551E-03
      38:  *   b2 =    150         1.5          1.9358469127E+00  2.2031669222E-01
      39:  *   b3 =   -100        -1           -1.4646871366E+00  2.2175707739E-01
      40:  *   b4 =      1          0.01        1.2867534640E-02  4.4861358114E-04
      41:  *   b5 =      2          0.02        2.2122699662E-02  8.9471996575E-04
      42:  * 
      43:  * Residual Sum of Squares:                    5.4648946975E-05
      44:  * Residual Standard Deviation:                1.3970497866E-03
      45:  * Degrees of Freedom:                                28
      46:  * Number of Observations:                            33
      47:  */
      48: Title "MGH17";
      49: Variables y,x;
      50: // Note: Using Start 2 initial parameter values.
      51: Parameter b1 = 0.5;
      52: Parameter b2 = 1.5;
      53: Parameter b3 = -1;
      54: Parameter b4 = 0.01;
      55: Parameter b5 = 0.02;
      56: Function y = b1 + b2*exp(-x*b4) + b3*exp(-x*b5);
      57: Plot;
      58: Data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    MGH17
    Number of observations = 33
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 21
    Final sum of squared deviations = 5.4648947E-005
    Final sum of deviations = 2.3375524E-011
    Standard error of estimate = 0.00139705
    Average deviation = 0.000949558
    Maximum deviation for any observation = 0.00447599
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9999  (99.99%)
    Durbin-Watson test for autocorrelation = 2.060
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y           0.406           0.936       0.6308182        0.189811
             x               0             320             160         96.6954
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1            0.5        0.37541006     0.002072315     181.15  0.00001
            b2            1.5        1.93584782       0.2203171       8.79  0.00001
            b3             -1       -1.46468805       0.2217575      -6.60  0.00001
            b4           0.01      0.0128675365    0.0004486139      28.68  0.00001
            b5           0.02       0.022122696    0.0008947203      24.73  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     4        1.152848       0.2882121  147668.68  0.00001
    Error         28   5.464895E-005   1.951748E-006
    Total         32        1.152903
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.