NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Misra1c Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Misra1c           (Misra1c.dat)
       8:  * 
       9:  * Description:   These data are the result of a NIST study regarding
      10:  *                dental research in monomolecular adsorption.  The
      11:  *                response variable is volume, and the predictor
      12:  *                variable is pressure.
      13:  * 
      14:  * Reference:     Misra, D., NIST (1978).  
      15:  *                Dental Research Monomolecular Adsorption.
      16:  * 
      17:  * Data:          1 Response  (y = volume)
      18:  *                1 Predictor (x = pressure)
      19:  *                14 Observations
      20:  *                Average Level of Difficulty
      21:  *                Observed Data
      22:  * 
      23:  * Model:         Miscellaneous Class
      24:  *                2 Parameters (b1 and b2)
      25:  * 
      26:  *                y = b1 * (1-(1+2*b2*x)**(-.5))  +  e
      27:  * 
      28:  *           Starting values                  Certified Values
      29:  * 
      30:  *         Start 1     Start 2           Parameter     Standard Deviation
      31:  *   b1 =   500         600           6.3642725809E+02  4.6638326572E+00
      32:  *   b2 =     0.0001      0.0002      2.0813627256E-04  1.7728423155E-06
      33:  *   
      34:  * Residual Sum of Squares:                    4.0966836971E-02
      35:  * Residual Standard Deviation:                5.8428615257E-02
      36:  * Degrees of Freedom:                                12
      37:  * Number of Observations:                            14
      38:  */
      39: Title "Misra1c";
      40: Variables y,x;
      41: Parameter b1 = 500;
      42: Parameter b2 = 0.0001;
      43: Function  y = b1 * (1-(1+2*b2*x)**(-.5));
      44: plot;
      45: data;
    
    Beginning computation...
    Stopped due to: Both parameter and relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Misra1c
    Number of observations = 14
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Both parameter and relative function convergence.
    Number of iterations performed = 5
    Final sum of squared deviations = 4.0966837E-002
    Final sum of deviations = 1.0798291E-001
    Standard error of estimate = 0.0584286
    Average deviation = 0.0508821
    Maximum deviation for any observation = 0.0831846
    Proportion of variance explained (R^2) = 1.0000  (100.00%)
    Adjusted coefficient of multiple determination (Ra^2) = 1.0000  (100.00%)
    Durbin-Watson test for autocorrelation = 1.101
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y           10.07           81.78        43.34071        22.80652
             x            77.6             760           375.4        216.0569
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1            500        636.427248        4.663833     136.46  0.00001
            b2         0.0001    0.000208136276   1.772843E-006     117.40  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     1        6761.747        6761.747   2.0E+006  0.00001
    Error         12      0.04096684     0.003413903
    Total         13        6761.788
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.