NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Nelson Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Nelson            (Nelson.dat)
       8:  * 
       9:  * Description:   These data are the result of a study involving
      10:  *                the analysis of performance degradation data from
      11:  *                accelerated tests, published in IEEE Transactions
      12:  *                on Reliability.  The response variable is dialectric
      13:  *                breakdown strength in kilo-volts, and the predictor
      14:  *                variables are time in weeks and temperature in degrees
      15:  *                Celcius.
      16:  * 
      17:  * Reference:     Nelson, W. (1981).  
      18:  *                Analysis of Performance-Degradation Data.  
      19:  *                IEEE Transactions on Reliability.
      20:  *                Vol. 2, R-30, No. 2, pp. 149-155.
      21:  * 
      22:  * Data:          1 Response   ( y = dialectric breakdown strength) 
      23:  *                2 Predictors (x1 = time; x2 = temperature)
      24:  *                128 Observations
      25:  *                Average Level of Difficulty
      26:  *                Observed Data
      27:  * 
      28:  * Model:         Exponential Class
      29:  *                3 Parameters (b1 to b3)
      30:  * 
      31:  *                log[y] = b1 - b2*x1 * exp[-b3*x2]  +  e
      32:  * 
      33:  *           Starting values                  Certified Values
      34:  * 
      35:  *         Start 1     Start 2           Parameter     Standard Deviation
      36:  *   b1 =    2           2.5          2.5906836021E+00  1.9149996413E-02
      37:  *   b2 =    0.0001      0.000000005  5.6177717026E-09  6.1124096540E-09
      38:  *   b3 =   -0.01       -0.05        -5.7701013174E-02  3.9572366543E-03
      39:  * 
      40:  * Residual Sum of Squares:                    3.7976833176E+00
      41:  * Residual Standard Deviation:                1.7430280130E-01
      42:  * Degrees of Freedom:                               125
      43:  * Number of Observations:                           128
      44:  */
      45: Title "Nelson";
      46: Variables y,x1,x2;
      47: Parameter b1 = 2;
      48: Parameter b2 = 0.0001;
      49: Parameter b3 = -0.01;
      50: Double logy;
      51: logy = log(y);
      52: Function logy = b1 - b2*x1 * exp(-b3*x2);
      53: Data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Nelson
    Number of observations = 128
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 65
    Final sum of squared deviations = 3.7976833E+000
    Final sum of deviations = -3.6139114E-010
    Standard error of estimate = 0.174303
    Average deviation = 0.126368
    Maximum deviation for any observation = 0.613974
    Proportion of variance explained (R^2) = 0.9302  (93.02%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9291  (92.91%)
    Durbin-Watson test for autocorrelation = 0.967
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y               1            18.5        11.23805        4.166401
            x1               1              64          21.875         22.2707
            x2             180             275           232.5        35.22705
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1              2         2.5906836         0.01915     135.28  0.00001
            b2         0.0001   5.61777172E-009    6.11241E-009       0.92  0.35983
            b3          -0.01     -0.0577010132     0.003957238     -14.58  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     2        50.61495        25.30747     832.99  0.00001
    Error        125        3.797683      0.03038147
    Total        127        54.41263
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.