NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Ratkowsky2 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Ratkowsky2        (Ratkowsky2.dat)
       8:  * 
       9:  * Description:   This model and data are an example of fitting
      10:  *                sigmoidal growth curves taken from Ratkowsky (1983).
      11:  *                The response variable is pasture yield, and the
      12:  *                predictor variable is growing time.
      13:  * 
      14:  * Reference:     Ratkowsky, D.A. (1983).  
      15:  *                Nonlinear Regression Modeling.
      16:  *                New York, NY:  Marcel Dekker, pp. 61 and 88.
      17:  * 
      18:  * Data:          1 Response  (y = pasture yield)
      19:  *                1 Predictor (x = growing time)
      20:  *                9 Observations
      21:  *                Higher Level of Difficulty
      22:  *                Observed Data
      23:  * 
      24:  * Model:         Exponential Class
      25:  *                3 Parameters (b1 to b3)
      26:  * 
      27:  *                y = b1 / (1+exp[b2-b3*x])  +  e
      28:  * 
      29:  *           Starting Values                  Certified Values
      30:  * 
      31:  *         Start 1     Start 2           Parameter     Standard Deviation
      32:  *   b1 =   100         75            7.2462237576E+01  1.7340283401E+00
      33:  *   b2 =     1          2.5          2.6180768402E+00  8.8295217536E-02
      34:  *   b3 =     0.1        0.07         6.7359200066E-02  3.4465663377E-03
      35:  * 
      36:  * Residual Sum of Squares:                    8.0565229338E+00
      37:  * Residual Standard Deviation:                1.1587725499E+00
      38:  * Degrees of Freedom:                                6
      39:  * Number of Observations:                            9 
      40:  */
      41: Title "Ratkowsky2";
      42: Variables y,x;
      43: Parameter b1 = 100;
      44: Parameter b2 = 1;
      45: Parameter b3 = 0.1;
      46: Function y = b1 / (1+exp(b2-b3*x));
      47: Plot;
      48: Data;
    
    Beginning computation...
    Stopped due to: Both parameter and relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Ratkowsky2
    Number of observations = 9
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Both parameter and relative function convergence.
    Number of iterations performed = 8
    Final sum of squared deviations = 8.0565229E+000
    Final sum of deviations = 3.0233598E-001
    Standard error of estimate = 1.15877
    Average deviation = 0.779374
    Maximum deviation for any observation = 1.8623
    Proportion of variance explained (R^2) = 0.9983  (99.83%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9977  (99.77%)
    Durbin-Watson test for autocorrelation = 2.572
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y            8.93           67.08        38.83778        24.10411
             x               9              79        42.55556        25.80267
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1            100        72.4622376        1.734028      41.79  0.00001
            b2              1        2.61807684      0.08829522      29.65  0.00001
            b3            0.1      0.0673591999     0.003446566      19.54  0.00001
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     2        4640.007        2320.003    1727.80  0.00001
    Error          6        8.056523        1.342754
    Total          8        4648.063
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.