NEWS
  • NLREG has been selected as the "Editor"s Pick" by SoftSeek.

    link to softseek.com

  • NLREG is in use at hundreds of universities, laboratories, and government agencies around the world (over 20 countries). For a list of a few organizations using NLREG click here.

  • If you have categorical variables, you may want to use a Decision Tree to model your data. Check out the DTREG Decision Tree Builder.

  • You also should check out the News Rover program that automatically scans Usenet newsgroups, downloads messages of interest to you, decodes binary file attachments, reconstructs files split across multiple messages, and eliminates spam and duplicate files.

    NIST - Roszman1 Dataset


       1: /*
       2:  * Statistical Reference Datasets  (Nonlinear Regression)
       3:  * Statistical Engineering Division
       4:  * National Institute of Standards and Technology
       5:  * http://www.nist.gov/itl/div898/strd/
       6:  *
       7:  * Dataset Name:  Roszman1          (Roszman1.dat)
       8:  * 
       9:  * Description:   These data are the result of a NIST study involving
      10:  *                quantum defects in iodine atoms.  The response
      11:  *                variable is the number of quantum defects, and the
      12:  *                predictor variable is the excited energy state.
      13:  *                The argument to the ARCTAN function is in radians.
      14:  * 
      15:  * Reference:     Roszman, L., NIST (19??).  
      16:  *                Quantum Defects for Sulfur I Atom.
      17:  * 
      18:  * Data:          1 Response  (y = quantum defect)
      19:  *                1 Predictor (x = excited state energy)
      20:  *                25 Observations
      21:  *                Average Level of Difficulty
      22:  *                Observed Data
      23:  * 
      24:  * Model:         Miscellaneous Class
      25:  *                4 Parameters (b1 to b4)
      26:  * 
      27:  *                pi = 3.141592653589793238462643383279E0
      28:  *                y =  b1 - b2*x - arctan[b3/(x-b4)]/pi  +  e
      29:  * 
      30:  * 
      31:  *           Starting Values                  Certified Values
      32:  * 
      33:  *         Start 1     Start 2           Parameter     Standard Deviation
      34:  *   b1 =      0.1         0.2         2.0196866396E-01  1.9172666023E-02
      35:  *   b2 =     -0.00001    -0.000005   -6.1953516256E-06  3.2058931691E-06
      36:  *   b3 =   1000        1200           1.2044556708E+03  7.4050983057E+01
      37:  *   b4 =   -100        -150          -1.8134269537E+02  4.9573513849E+01
      38:  * 
      39:  * Residual Sum of Squares:                    4.9484847331E-04
      40:  * Residual Standard Deviation:                4.8542984060E-03
      41:  * Degrees of Freedom:                                 21
      42:  * Number of Observations:                             25
      43:  */
      44: Title "Roszman1";
      45: Variables y,x;
      46: Parameter b1 = 0.1;
      47: Parameter b2 = -0.00001;
      48: Parameter b3 = 1000;
      49: Parameter b4 = -100;
      50: Function y =  b1 - b2*x - atan(b3/(x-b4))/pi;
      51: Angletype radians;
      52: plot;
      53: data;
    
    Beginning computation...
    Stopped due to: Relative function convergence.
    
    
       ----  Final Results  ----
    
    NLREG version 4.0
    Copyright (c) 1992-1997 Phillip H. Sherrod.  All rights reserved.
    This is a registered copy of NLREG that may not be redistributed.
    
    Roszman1
    Number of observations = 25
    Maximum allowed number of iterations = 500
    Convergence tolerance factor = 1.000000E-010
    Stopped due to: Relative function convergence.
    Number of iterations performed = 5
    Final sum of squared deviations = 4.9484847E-004
    Final sum of deviations = 7.2362394E-011
    Standard error of estimate = 0.0048543
    Average deviation = 0.00328547
    Maximum deviation for any observation = 0.0102367
    Proportion of variance explained (R^2) = 0.9984  (99.84%)
    Adjusted coefficient of multiple determination (Ra^2) = 0.9982  (99.82%)
    Durbin-Watson test for autocorrelation = 1.688
    
    
                 ----  Descriptive Statistics for Variables  ----
    
     Variable    Minimum value   Maximum value    Mean value     Standard dev.
    ----------  --------------  --------------  --------------  --------------
             y        0.251809        0.624169       0.4211756       0.1137018
             x        -4868.68         -464.17       -2016.013        1378.218
    
    
                       ----  Calculated Parameter Values  ----
    
     Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
    ----------  -------------  ----------------  --------------  ---------  -------
            b1            0.1       0.201968658      0.01917267      10.53  0.00001
            b2        -1E-005  -6.19535071E-006   3.205893E-006      -1.93  0.06690
            b3           1000        1204.45569        74.05099      16.27  0.00001
            b4           -100       -181.342709        49.57352      -3.66  0.00147
    
    
                      ----  Analysis of Variance  ----
    
      Source     DF   Sum of Squares    Mean Square    F value   Prob(F)
    ----------  ----  --------------  --------------  ---------  -------
    Regression     3       0.3097796       0.1032599    4382.06  0.00001
    Error         21    0.0004948485   2.356421E-005
    Total         24       0.3102745
    



    Return to NLREG home page

    Download demonstration copy of NLREG.

    Download manuals for NLREG.

    Purchase NLREG.

    DTREG Decision Tree building software.